HepMC Proposal

Presentation of the
proposal for the new
version of HepMC

Lynn Garren
July 25, 2006

background

m CMS requested MathCore GenVector

m Others want no change to Lorentz vector
m Concern about dependencies

m Compromise proposed last week

m A couple more unrelated requests

The Proposal

m Remove all dependencies

m Replace HeplLorentzVector with minimal
simple vector
m Prefer struct of four doubles
= Need a bit more

m Continue to use existing code?

= [emplate constructor, but not class
m http://lIcgapp.cern.ch/project/simu/HepMC/download/

SimpleVector.h

m class FourVector
= 4-momentum or position

m class ThreeVector
m Position

m Independent
m FourVector does not have a ThreeVector

FourVector constructors

m FourVector(double x, double y, double z,
double 1=0)

m FourVector(double t)
m FourVector()
m template <class T >

inline FourVector(const T& v)

- Uses x(), y(), z(), t()
m Side effect: problem with FourVector(0)
m Seen, for instance, with GenParticle(0,...)

FourVector methods

= px() py() pz() () m() m2()

m perp() perp2() mag()

= x() y() z() t()

m theta() phi() rho()

E= == |=

m pseudoRapidity() eta()

m set(,,,) setX() setY() setZ() setT()
m setPx() setPy() setPz() setE()

ThreeVector methods

m X() y() z()
= phi() theta() r()

= mag() perp2() perp()

m set(,,) setX() setY() setZ()
m setPhi() setThetal()

Rationale

m Methods used by HepMC

m Similar methods that seem likely to be
used

m Don’t want a full vector class

Pdfinfo

m CMS requests Pdflnfo class

= HepMC 1.287

m GenEvent has pointer (undefined by default)

double x1; // fraction of beam momentum carried by first parton
("beam side")

double x2; // fraction of beam momentum carried by second parton
("target side")

int kf1; // flavour code of first parton

int kf2; // flavour code of second parton

double QscalePDF; // Q-scale used in evaluation of PDF's (GeV)
double pdf1; // PDF (kf1, x1, Q)

double pdf2; // PDF (kf2, x2,Q)

m Needs to be discussed by LCG simulation

Generated Mass

m Expecting request from Monte Carlo authors

m Store generated mass
= Additional double
m Certainly there in HEPEVT common block
m Precision problem

m Might perhaps store px, py, pz, m
m Code breaks...

m Doesn’t make sense to calculate mass to store it
- Must get generated mass directly from generator

Conclusion

= Without templated constructor, not backwards
compatible

m With templated constructor, partially backwards
compatible

m Templated constructor overrides default conversion
(int to double)

m Possible obscure errors

m FourVector is not a full physics vector
Implementation

m Pere promised something to help when reading
m |s this proposal acceptable?

